Sains Malaysiana 54(1)(2025): 93-108
http://doi.org/10.17576/jsm-2025-5401-08
Analisis Kinetik bagi Segmen Bahagian Pinggiran Atas Badan semasa Melakukan Aktiviti Kehidupan Harian
(Kinetic Analysis of Upper Extremity
Segment during Activities of Daily Living)
HASYATUN
CHE-NAN1,2 & AZMIN SHAM RAMBELY2,*
1Jabatan Matematik dan Sains Komputer, Kolej Poly-Tech MARA Bangi, 43000 Kajang, Selangor, Malaysia
2Jabatan Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
Diserahkan: 21 Julai 2024/Diterima: 13 September 2024
Abstrak
Pembangunan
model biomekanik untuk mendapatkan nilai kilasan dapat membantu mencegah kecederaan daripada berlaku. Kajian ini bertujuan untuk membangunkan model biomekanik bahagian atas badan yang merangkumi lengan atas, lengan bawah dan tangan untuk mendapatkan nilai kilasan sendi bahu, siku dan pergelangan tangan semasa melakukan aktiviti menyentuh bahu kontra lateral, mencapai suis dan menyikat rambut. Seterusnya, model biomekanik ini disahkan melalui perbezaan antara nilai sudut uji kaji dengan nilai sudut anggaran menggunakan kaedah berangka, Runge-Kutta peringkat kelima. Selain itu, kajian ini dijalankan untuk menganalisis dan membandingkan nilai kilasan semasa melakukan tiga aktiviti kehidupan harian. Kajian ini melibatkan 20 orang subjek normal dalam lingkungan umur 24-56 tahun dengan purata berat badan 72.9±16.5 kg. Aktiviti pergerakan dirakam menggunakan Vicon
Nexus 1.8.1 (Oxford Metrics Ltd., Oxford, England) dengan kadar frekuensi 100 Hz. Melalui rakaman ini, data kinematik seperti tempoh masa pergerakan, sudut, halaju dan pecutan sudut sendi diperoleh.
Nilai kilasan sendi diramal berdasarkan model anggota bahagian atas badan dengan menggantikan data kinematik ke dalam persamaan dinamik songsang yang diterbitkan menggunakan kaedah Kane. Pengesahan pemodelan menggunakan kaedah Runge-Kutta peringkat kelima Butcher bagi memperoleh semula nilai sudut anggaran menggunakan nilai kilasan yang telah dianggarkan. Peratusan ralat relatif telah dihitung dan didapati ia tidak terlalu besar dengan nilai 0.038% bagi nilai sudut bahu dan 0.019% bagi nilai sudut siku. Oleh itu, dapat disimpulkan bahawa data sudut uji kaji dan data sudut anggaran adalah sepadan. Seterusnya, nilai kilasan dianalisis menggunakan analisis varian satu hala (ANOVA). Hasil kajian mendapati tidak terdapat perbezaan yang signifikan pada semua parameter kinetik bagi ketiga-tiga aktiviti yang dikaji. Oleh itu, kajian kinetik ini membantu memperoleh pemahaman tentang biomekanik pergerakan menerusi nilai kilasan, yang seterusnya menyumbang kepada kemajuan dalam teknik pemulihan dan reka bentuk ergonomik.
Kata kunci: Analisis kinetik; anggota badan bahagian atas; kilasan; mencapai suis; menyentuh bahu kontra lateral; menyikat rambut
Abstract
The
development of this model aims to obtain torque values that help prevent
injuries from occurring. Thus, this study aims to develop a biomechanical model
for the upper limb, which includes the upper arm, forearm, and hand, to obtain
torque values for the shoulder, elbow, and wrist joints during daily activities
touching the contralateral shoulder, reaching for a switch, and combing hair.
Subsequently, this biomechanical model is validated by comparing the
differences between the experimental angle values and the estimated angle
values using the fifth-order Runge-Kutta numerical
method. In addition, this study is conducted to analyze and compare the kinetic data values while performing three daily activities.
The study included 20 normal subjects in the age range of 24-56 years old, with
an average body weight of 72.9±16.5 kg. The activity was recorded using the
Vicon Nexus 1.8.1 (Oxford Metrics Ltd., Oxford, England) system with a
frequency rate of 100 Hz. Through this recording, kinematics data such as
movement time, angles, velocity, and angular acceleration of upper limb joints
were obtained. Torque joint values were derived using the Kane’s method which
was based on the upper extremity model by applying the kinematics data to the
inverse dynamic equation. Furthermore, Butcher’s fifth-order Runge-Kutta method was used to determine the estimated angle
value using the already determined torque. The relative error percentage was
calculated and found that it was not too large, with values of 0.038% for the
shoulder angle and 0.019% for the elbow angle. Therefore, it was concluded that
the experimental angle data and the estimated angle data are consistent. The
data were then analyzed using a one-way analysis of
variance (ANOVA). The results indicated there is no significant differences in
any of the kinetic parameters for all three analyzed activities. Therefore, this kinetic study can help us gain some insights into
the biomechanics of movement using torque value, which later will improve
rehabilitation techniques and ergonomic design.
Keywords: Hair
combing; kinetic analysis; reaching switch; torque; touching contralateral
shoulder; upper extremity
RUJUKAN
Abdalla, F.S. & Rambely,
A.S. 2014. Predicting the safe load on backpacker’s arm using Lagrange
multipliers method. AIP Conference Proceedings 1614(1): 948-954.
Bloomer, C., Wang, S. & Kontson, K. 2020. Kinematic analysis of motor learning in
upper limb body-powered bypass prosthesis training. PLoS ONE 15(1): e0226563.
Chai, T., Li, A., Zhang, S., Li, Z. &
Wang, Y. 2022. Lagrange motion analysis and view embeddings for improved gait
recognition. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). hlm. 20217-20226.
Che-Nan, H. & Rambely,
A.S. 2022. Kinematic analysis of daily activity of touching lateral shoulder
for normal subjects. Applied Sciences 12(4): 2069.
Che-Nan, H. & Rambely,
A.S. 2017. Peak velocity of elbow joint during touching contra lateral shoulder
activity for normal subject. The 4th International Conference on
Mathematical Sciences. hlm. 1-6.
Che-Nan, H., Rambely,
A.S., Ghani, N.A.B. & Abidin, S.B.Z. 2018.
Optimization of lower extremity segment during backpack carriage. Far East
Journal of Mathematical Sciences 106(2): 563-575.
Cleather, D.J., Goodwin, J.E. & Bull, A.M.J.
2011. An optimization approach to inverse dynamics provides insight as to the
function of the biarticular muscles during vertical jumping. Annals of
Biomedical Engineering 39(1): 147-160.
DeVita, P. & Hortobagyi,
T. 2000. Age causes a redistribution of joint torques and powers during gait. Journal
of Applied Physiology 88(5): 1804-1811.
Flash, T. & Hogan, N. 1985. The
coordination of arm movements: An experimentally confirmed mathematical model. Journal
of Neuroscience 5(7): 1688-1703.
Fukuchi, C.A., Fukuchi, R.K. & Duarte,
M. 2019. Effects of walking speed on gait biomechanics in healthy participants:
A systematic review and meta-analysis. Systematic Reviews 8(1): 153.
Fuller, J., Liu, L.J., Murphy, M.C. &
Mann, R.W. 1997. A comparison of lower-extremity skeletal kinematics measured
using skin- and pin-mounted markers. Human Movement Science 16(2-3):
219-242.
Hall, L.C., Middlebrook, E.E. &
Dickerson, C.R. 2011. Analysis of the influence of rotator cuff impingements on
upper limb kinematics in an elderly population during activities of daily
living. Clinical Biomechanics 26(6): 579-584.
Hansen, C., Gosselin, F., Mansour, K.B.,
Devos, P. & Marin, F. 2018. Design-validation of a hand exoskeleton using
musculoskeletal modeling. Applied Ergonomics 68: 283-288.
Henley, J.D. 2002. A kinematic and kinetic
analysis of postural perturbation. Tesis Dr. Fal, The Pennsylvania State
University.
Hossain, M.B., Hossain, M.J., Miah, M.M.
& Alam, M.S. 2017. A comparative study on fourth
order and Butcher’s fifth order Runge-Kutta methods
with third order initial value problem (IVP). Applied and Computational
Mathematics 6(6): 243-253.
Hussain, Z. & Azlan,
N.Z. 2019. 3-D dynamic modeling and validation of
human arm for torque determination during eating activity using Kane’s method. Iranian
Journal of Science and Technology - Transactions of Mechanical Engineering 44: 661-694.
Huysamen, K., Bosch, T., de Looze,
M., Stadler, K.S., Graf, E. & O’Sullivan, L.W. 2018. Evaluation of a
passive exoskeleton for static upper limb activities. Applied Ergonomic 70: 148-155.
Karner, J., Reichenfelser,
W. & Gfoehler, M. 2012. Kinematic and kinetic
analysis of human motion as design input for an upper extremity bracing system. Proceedings of the IASTED International Conference Biomedical Engineering. hlm. 376-383.
Lee, T.S. & Lin, Y.J. 1992. An
investigation of numerical computations for inverse dynamics of robotic
systems. Proceedings IEEE International Conference on Systems, Man and
Cybernetics. hlm. 1476-1480.
Li, X., Sun, H., Liao, L. & Song, J.
2015. Simulation and comparison research of Lagrange and Kane dynamics modeling for the 4-dof modular industrial robot. 5th International Conference on Advanced Design and Manufacturing Engineering. hlm. 251-254.
Masjedi, M. & Duffell,
L.D. 2013. Dynamic analysis of the upper limb during activities of daily
living: Comparison of methodologies. Journal of Engineering in Medicine 227(12): 1275-1283.
McGrath, M., Howard, D. & Baker, R.
2017. A Lagrange-based generalised formulation for the equations of motion of
simple walking models. Journal of Biomechanics 55: 139-143.
Mesquita, I.A., Fonseca, P.F.P., Borgonovo-Santos, M., Ribeiro, E., Pinheiro, A.R.V.,
Correia, M.V. & Silva, C. 2020. Comparison of upper limb kinematics in two
activities of daily living with different handling requirements. Human
Movement Science 72: 102632.
Molina-Garcia, P., Migueles,
J.H., Cadenas-Sanchez, C., Esteban-Cornejo, I.,
Mora-Gonzalez, J., Rodriguez-Ayllon, M., Plaza-Florido, A., Vanrenterghem, J.
& Ortega, F.B. 2019. A systematic review on biomechanical characteristics
of walking in children and adolescents with overweight/obesity: Possible
implications for the development of musculoskeletal disorders. Obesity
Reviews 20(7): 1033-1044.
Murray, I.A. & Johnson, G.R. 2004. A
study of the external forces and moments at the shoulder and elbow while
performing every day tasks. Clinical Biomechanics 19(6):
586-594.
Nester, C., Jones, R.K., Liu, A., Howard,
D., Lundberg, A., Arndt, A., Lundgren, P., Stacoff,
A. & Wolf, P. 2007. Foot kinematics during walking measured using bone and
surface mounted markers. Journal of Biomechanics 40(15): 3412-3423.
Pennestri, E., Stefanelli,
R., Valentini, P.P. & Vita, L. 2007. Virtual musculo-skeletal model for the biomechanical analysis of
the upper limb. Journal of Biomechanics 40(6): 1350-1361.
Pol, F., Baharlouei,
H., Taheri, A., Menz, H.B. & Forghany,
S. 2021. Foot and ankle biomechanics during walking in alder adults: A
systematic review and meta-analysis of observational studies. Gait and
Posture 89: 14-24.
Purushotham, A. 2013. Kane’s method for robotic arm
dynamics: A novel approach. Journal of Mechanical and Civil Engineering 6: 7-13.
Rambely, A.S. & Fazrolrozi.
2012. A six-link kinematic chain model of human body using Kane’s method. International
Journal of Modern Physics: Conference Series. hlm.
59-67.
Rehbinder, H. & Martin, C. 2001. A control
theoretic model of the forearm. Journal of Biomechanics 34(6): 741-748.
Ren, L., Jones, R.K. & Howard, D. 2005.
Dynamic analysis of load carriage biomechanics during level walking. Journal
of Biomechanics 38(4): 853-863.
Reyes-Guzmán, A.D.L., Gil-Agudo, A., Penasco-Martin, B.,
Solis-Mozos, M., Ama-Espinosa,
A.D. & Perez-Rizo, E. 2010. Kinematic analysis of
the daily activity of drinking from a glass in a population with cervical
spinal cord injury. Journal of Neuroengineering and Rehabilitation 7(41): 1-12.
*Pengarang untuk surat-menyurat;
email: asr@ukm.edu.my
|